Brain Network Analysis:
1. Mapping Symptoms to Brain Networks with the Human Connectome. Fox MD. The New England Journal of Medicine. 2018;379(23):2237-2245. doi:10.1056/NEJMra1706158.
2. Network Analysis of Whole-Brain Functional Magnetic Resonance Imaging Dynamics: A New Framework Based on Dynamic Communicability. Gilson M, Kouvaris NE, Deco G, et al. NeuroImage. 2019;201:116007. doi:10.1016/j.neuroimage.2019.116007.
3. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Farahani FV, Karwowski W, Lighthall NR. Frontiers in Neuroscience. 2019;13:585. doi:10.3389/fnins.2019.00585.
4. BRAPH: A Graph Theory Software for the Analysis of Brain Connectivity. Mijalkov M, Kakaei E, Pereira JB, Westman E, Volpe G. PloS One. 2017;12(8):e0178798. doi:10.1371/journal.pone.0178798.
5. Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs. Yu Q, Du Y, Chen J, et al. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers. 2018;106(5):886-906. doi:10.1109/JPROC.2018.2825200.
6. Network Science and the Human Brain: Using Graph Theory to Understand the Brain and One of Its Hubs, the Amygdala, in Health and Disease. Mears D, Pollard HB. Journal of Neuroscience Research. 2016;94(6):590-605. doi:10.1002/jnr.23705.
7. Methods for Analysis of Brain Connectivity: An IFCN-sponsored Review. Rossini PM, Di Iorio R, Bentivoglio M, et al. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology. 2019;130(10):1833-1858. doi:10.1016/j.clinph.2019.06.006.
8. Small-World Human Brain Networks: Perspectives and Challenges. Liao X, Vasilakos AV, He Y. Neuroscience and Biobehavioral Reviews. 2017;77:286-300. doi:10.1016/j.neubiorev.2017.03.018.
9. From Brain Topography to Brain Topology: Relevance of Graph Theory to Functional Neuroscience. Minati L, Varotto G, D'Incerti L, Panzica F, Chan D. Neuroreport. 2013;24(10):536-43. doi:10.1097/WNR.0b013e3283621234.
10. Graph Theory Methods: Applications in Brain Networks. Sporns O. Dialogues in Clinical Neuroscience. 2018;20(2):111-121.
11. Topological Analyses of Functional Connectomics: A Crucial Role of Global Signal Removal, Brain Parcellation, and Null Models. Chen X, Liao X, Dai Z, et al. Human Brain Mapping. 2018;39(11):4545-4564. doi:10.1002/hbm.24305.
12. Graph Theoretical Modeling of Brain Connectivity. He Y, Evans A. Current Opinion in Neurology. 2010;23(4):341-50. doi:10.1097/WCO.0b013e32833aa567.
Gut-Brain Axis:
1. The Gut Microbiota-Brain Axis, Psychobiotics and Its Influence on Brain and Behaviour: A Systematic Review. Barrio C, Arias-Sánchez S, Martín-Monzón I. Psychoneuroendocrinology. 2022;137:105640. doi:10.1016/j.psyneuen.2021.105640.
2. Crosstalk Between the Gut Microbiota and the Brain: An Update on Neuroimaging Findings. Liu P, Peng G, Zhang N, Wang B, Luo B. Frontiers in Neurology. 2019;10:883. doi:10.3389/fneur.2019.00883.
3. The Microbiota-Gut-Brain Axis. Cryan JF, O'Riordan KJ, Cowan CSM, et al. Physiological Reviews. 2019;99(4):1877-2013. doi:10.1152/physrev.00018.2018.
4. Gut-Brain Psychology: Rethinking Psychology From the Microbiota-Gut-Brain Axis. Liang S, Wu X, Jin F. Frontiers in Integrative Neuroscience. 2018;12:33. doi:10.3389/fnint.2018.00033.
5. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Chen Y, Xu J, Chen Y. Nutrients. 2021;13(6):2099. doi:10.3390/nu13062099.
6. Beyond Digestion: Exploring How the Gut Microbiota Modulates Human Social Behaviors. Abavisani M, Faraji N, Ebadpour N, Kesharwani P, Sahebkar A. Neuroscience. 2025;565:52-62. doi:10.1016/j.neuroscience.2024.11.068.
7. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Fekete M, Lehoczki A, Major D, et al. Nutrients. 2024;16(6):789. doi:10.3390/nu16060789.
8. Causal Relationship of Gut Microbiota and Metabolites on Cognitive Performance: A Mendelian Randomization Analysis. Cao W, Xing M, Liang S, et al. Neurobiology of Disease. 2023;191:106395. doi:10.1016/j.
Brain Network Analysis:
1. Mapping Symptoms to Brain Networks with the Human Connectome. Fox MD. The New England Journal of Medicine. 2018;379(23):2237-2245. doi:10.1056/NEJMra1706158.
2. Network Analysis of Whole-Brain fMRI Dynamics: A New Framework Based on Dynamic Communicability. Gilson M, Kouvaris NE, Deco G, et al. NeuroImage. 2019;201:116007. doi:10.1016/j.neuroimage.2019.116007.
3. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Farahani FV, Karwowski W, Lighthall NR. Frontiers in Neuroscience. 2019;13:585. doi:10.3389/fnins.2019.00585.
4. BRAPH: A Graph Theory Software for the Analysis of Brain Connectivity. Mijalkov M, Kakaei E, Pereira JB, Westman E, Volpe G. PloS One. 2017;12(8):e0178798. doi:10.1371/journal.pone.0178798.
Heart Rate Variability (HRV) and Cognitive Function:
1. The Connection Between Heart Rate Variability (HRV), Neurological Health, and Cognition: A Literature Review. Arakaki X, Arechavala RJ, Choy EH, et al. Frontiers in Neuroscience. 2023;17:1055445. doi:10.3389/fnins.2023.1055445.
2. Heart Rate Variability and Cognitive Function: A Systematic Review. Forte G, Favieri F, Casagrande M. Frontiers in Neuroscience. 2019;13:710. doi:10.3389/fnins.2019.00710.
3. Respiratory Sinus Arrhythmia During Biofeedback Is Linked to Persistent Improvements in Attention, Short-Term Memory, and Positive Self-Referential Episodic Memory. Bögge L, Colás-Blanco I, Piolino P. Frontiers in Neuroscience. 2022;16:791498. doi:10.3389/fnins.2022.791498.
Neurofeedback and Cognitive Enhancement:
1. EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. Enriquez-Geppert S, Huster RJ, Herrmann CS. Frontiers in Human Neuroscience. 2017;11:51. doi:10.3389/fnhum.2017.00051.
2. Self-Regulation of Brain Activity and Its Effect on Cognitive Function in Patients With Multiple Sclerosis - First Insights From an Interventional Study Using Neurofeedback. Kober SE, Pinter D, Enzinger C, et al. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology. 2019;130(11):2124-2131. doi:10.1016/j.clinph.2019.08.025.
3. Improving Cognitive Control: Is Theta Neurofeedback Training Associated With Proactive Rather Than Reactive Control Enhancement? Eschmann KCJ, Mecklinger A. Psychophysiology. 2022;59(5):e13873. doi:10.1111/psyp.13873.
4. The More, the Better? Learning Rate and Self-Pacing in Neurofeedback Enhance Cognitive Performance in Healthy Adults. Uslu S, Vögele C. Frontiers in Human Neuroscience. 2023;17:1077039. doi:10.3389/fnhum.2023.1077039.
5. Additive Effects of EEG Neurofeedback on Medications for ADHD: A Systematic Review and Meta-Analysis. Lin FL, Sun CK, Cheng YS, et al. Scientific Reports. 2022;12(1):20401. doi:10.1038/s41598-022-23015-0.
Meditation and Cognitive Function:
1. Common and Distinct Lateralised Patterns of Neural Coupling During Focused Attention, Open Monitoring and Loving Kindness Meditation. Yordanova J, Kolev V, Mauro F, et al. Scientific Reports. 2020;10(1):7430. doi:10.1038/s41598-020-64324-6.
2. Functional Reorganization of the Brain in Distinct Frequency Bands During Eyes-Open Meditation. Pradeep Kumar G, Sharma K, Adarsh A, et al. Consciousness and Cognition. 2023;116:103590. doi:10.1016/j.concog.2023.103590.
3. Attentional and Cognitive Monitoring Brain Networks in Long-Term Meditators Depend on Meditation States and Expertise. Yordanova J, Kolev V, Nicolardi V, et al. Scientific Reports. 2021;11(1):4909. doi:10.1038/s41598-021-84325-3.
4. Review of the Neural Oscillations Underlying Meditation. Lee DJ, Kulubya E, Goldin P, Goodarzi A, Girgis F. Frontiers in Neuroscience. 2018;12:178. doi:10.3389/fnins.2018.00178.
5. Mindfulness in the Focus of the Neurosciences - The Contribution of Neuroimaging to the Understanding of Mindfulness. Weder BJ. Frontiers in Behavioral Neuroscience. 2022;16:928522. doi:10.3389/fnbeh.2022.928522.
6. Meditation and Cardiovascular Risk Reduction: A Scientific Statement From the American Heart Association. Levine GN, Lange RA, Bairey-Merz CN, et al. Journal of the American Heart Association. 2017;6(10):e002218. doi:10.1161/JAHA.117.002218.
Gut-Brain Axis:
1. The Gut Microbiota-Brain Axis, Psychobiotics and Its Influence on Brain and Behaviour: A Systematic Review. Barrio C, Arias-Sánchez S, Martín-Monzón I. Psychoneuroendocrinology. 2022;137:105640. doi:10.1016/j.psyneuen.2021.105640.
2. Crosstalk Between the Gut Microbiota and the Brain: An Update on Neuroimaging Findings. Liu P, Peng G, Zhang N, Wang B, Luo B. Frontiers in Neurology. 2019;10:883. doi:10.3389/fneur.2019.00883.
3. The Microbiota-Gut-Brain Axis. Cryan JF, O'Riordan KJ, Cowan CSM, et al. Physiological Reviews. 2019;99(4):1877-2013. doi:10.1152/physrev.00018.2018.
4. Gut-Brain Psychology: Rethinking Psychology From the Microbiota-Gut-Brain Axis. Liang S, Wu X, Jin F. Frontiers in Integrative Neuroscience. 2018;12:33. doi:10.3389/fnint.2018.00033.
5. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Chen Y, Xu J, Chen Y. Nutrients. 2021;13(6):2099. doi:10.3390/nu13062099.
6. Beyond Digestion: Exploring How the Gut Microbiota Modulates Human Social Behaviors. Abavisani M, Faraji N, Ebadpour N, Kesharwani P, Sahebkar A. Neuroscience. 2025;565:52-62. doi:10.1016/j.neuroscience.2024.11.068.
7. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Fekete M, Lehoczki A, Major D, et al. Nutrients. 2024;16(6):789. doi:10.3390/nu16060789.
8. Causal Relationship of Gut Microbiota and Metabolites on Cognitive Performance: A Mendelian Randomization Analysis. Cao W, Xing M, Liang S, et al. Neurobiology of Disease. 2023;191:106395. doi:10.1016/j.